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The propellant feed system concepts and configurations used on

the Saturn V vehicle to convey propellants from the tank to the engine
are described. In addition, the engine gimbal lines that provide flex-
ibility for engine gimbaling and, therefore, vehicle control are de-
scribed from the original concepts used on the Jupiter vehicle through
the Saturn I to the more sophisticated systems of the Saturn V.

Design and development of propellant feed systems for future vehi-

cles will be based on the Saturn V feed system technology.
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PROPELLANT FEED DUCTING AND ENGINE GIMBAL LINES
FOR THE SATURN VEHICLES

By
P. L. Muller, Jr.
George C. Marshall Space Flight Center

Huntsville, Alabama

SUMMARY

The propellant feed system concepts and configurations of the S-IC,
S-1I, and S-IVB stages of the Saturn V launch vehicle are described in
detail, The design concepts of the flexible ducting for these stages are
presented. A description of the engine gimbal lines used on the Jupiter
and Saturn I vehicles is presented as background information for the
advanced concepts used on the Saturn V vehicle.

The propellant feed system is designed to deliver propellants to the
engine pump inlets at the correct conditions (temperature and pressure)
for proper pump operation, This system must deliver the propellants
as efficiently as possible; that is, with minimum weight and pressure
drop. Correctly designed propellant feed systems are essential for
proper vehicle operation.,

Design and development of propellant feed systems for future vehicles
will be based on the Saturn V feed system technology.

INTRODUCTION

The Saturn V vehicle is often described as the earth-escape launch
vehicle for Project Apollo manned lunar landing. This vehicle is
comprised of the S-IC (first stage), the S-II (second stage), the S-IVB
(third stage), an Instrument Unit and the Apollo spacecraft. The pro-
pellant feed system transfers propellant from the tanks to the engine
while providing the correct pressure and temperature for proper
pump start and operation, Propellant feed ducting, in addition to
transferring propellant from the tank to the engine, must allow for
installation tolerances, structural and thermal deflections, and
engine gimbaling,



A fuel and oxidizer are required for the engines on all three stages.
The fuels used are RP-1 in the S-IC stage and liquid hydrogen in the
S-II and S-IVB stages. Liquid oxygen is the oxidizer in all three stages.

The propellant feed system concept is based on two important con-
siderations, mechanical design and thermodynamic design. The thermo-
dynamic concept of the propellant feed system is presented in detail
sufficient only to support the mechanical design that is covered in greater
detail. The various ducting design concepts and problem areas that
comprise the mechanical portion of the propellant feed systems are
discussed later in this report.

The basic approach for ducting design is to provide maximum flexi-
bility (minimum terminal reaction loads) within the limitations imposed
by pressure drop and envelope requirements. The combined conditions
of thermal contraction, tolerance stackup, fluid momentum, internal
pressure, structural deflection and vehicle acceleration will result in
extreme terminal reaction loads if proper ducting design principles are
not followed,

S-1C STAGE OF SATURN V

The overall S-IC stage is shown in Figure 1. The S-IC stage has
five F-1 engines with LOX tank forward and the fuel tank aft. The LOX
system consists of a LOX tank 33 feet in diameter by 64 feet long and five
36-feet long suction lines with inside diameters varying from 21 to 17
inches. There are two fuel feed lines and one LOX feed line for each of
the five F-1 engines.

Fuel System

Figure 2 is a schematic of the RP-1 fuel system for the S-IC stage.
At the outlet of the fuel tank are two 12-inch diameter prevalves used to
shut down the engine in the event of engine valve failure or rupture of a
line downstream of the prevalves. Prior to fuel tank pre-pressurization,
nitrogen is bubbled into each fuel feed line to prevent temperature
stratification of the fuel in the tank and the feed lines.



LOX System

A schematic of the LOX system for the S-IC stage is shown in
Figure 3, The LOX feed lines are routed from the lower bulkhead of
the LOX tank through tunnels in the fuel tank to the engine turbopump
inlets. Each LOX feed line consists of a long suction duct, a prevalve,
and a pressure-volume compensator. The prevalve and the pressure-
volume compensator are described in detail below.

The five suction lines are connected by four-inch diameter inter=-
connect lines. The suction line interconnect junction is located below
the prevalves on the outboard suction lines and above the prevalve on
the inboard suction line. A six-inch diameter LLOX drain line is
terminated in the inboard suction line immediately above the prevalve
to drain the suction ducting. The two six-inch diameter primary tank
fill-and-drain lines are terminated in the aft bulkhead.

LOX Interconnect System

The LOX interconnect system for the S-IC stage is shown in
Figure 4. These interconnect lines are required to maintain LOX con-
ditions (temperature and pressure) at the turbopump inlets that will
prevent geysering during loading or standby and pump cavitation during
engine start. The required LOX conditions are maintained by circulat-
ing LOX from the tank through the down-flow feed lines into the inter-
connect lines and up another feed line. One circulation system consists
of engine No. 2 feed line for down-flow with engine No. 1 feed line for
up-flow. The other system consists of feed lines of engine Nos. 4 and
5 for down-flow and the engine No. 3 feed line for up-flow. At the start
of LOX circulation, helium is bubbled into the up-flow lines until the
LOX tank is about 5 percent full, At this time, circulation can be sus-
tained by thermal pumping. LOX conditions required to prevent geyser-
ing can be maintained by circulation due to thermal pumping. The
thermal pumping system is augmented by helium bubbling about 10
minutes before launch to maintain LOX temperature at the engine pump
inlet below the redline value of -275°F.

Ducting
The S-IC engine gimbal line concepts are different from those used

on earlier stages. On the Jupiter missile (FIG 5), the engine turbopump
was mounted to the stage, and the thrust chamber was gimbaled for



missile attitude control. Two sections of braided hose, one in the pitch
plane and the other in the yaw plane of the engine gimbal system, were
contained in the high-pressure discharge lines between the pump and
thrust chamber. These flex-hoses were located to provide all the nec-
essary flexibility for engine gimbaling. The use of external braid on a
bellows has long been the accepted method of providing bellows restraint.
The tendency of the bellows to elongate axially under the pressure-sep-
arating force is counteracted by the external braid, which acts as a
mechanical linkage. Without the braid, the bellows would be expanded
axially; so little or no flexibility would be available for gimbaling. The
primary advantages of braided bellows are low cost, simplicity of fab-
rication and small space envelope. The main disadvantage is that the
angular deflection of the line is restricted by the braid, which results
in high load requirements for engine gimbaling. These lines should be
designed so that rubbing contact between the braid and the end convolu-
tions is minimized.

The arrangement of the engine gimbal lines for the S-IB stage of
the Saturn IB vehicle is shown in Figure 6. On the S-IB stage, the turbo-
pump assembly is mounted piggy-back on the H-1 engine, and engine
gimbaling is provided for in the low-pressure feed system. An oxidizer
line and a fuel line are provided for each engine. A three-gimbal system
is used in this design. Two gimbals are located in the horizontal plane,
one in the pitch axis and the other in the yaw axis. The third gimbal is
located in the vertical plane to eliminate the torque from engine gimbal-
ing. When three gimbals are installed as indicated, lateral deflection
can be absorbed, as can angular motion. For a given angular rotation
of the individual gimbal joints, the amount of lateral deflection that can
be absorbed is directly proportional to the distance between the joints,
The primary advantage of gimbal joints is that higher angular deflections
can be provided with smaller actuating loads than with braided bellows.

The S-IC stage LOX and fuel system propellant feed ducting is
shown in Figure 7. Two tie rods are located at the upper end of the
outboard and inboard LOX suction ducts to accommodate the offset
between the LOX tank outlet and the fuel tunnel opening. Two gimbal
joints are located on the lower end to provide flexibility between the
fuel tunnel outlet and the thrust structure. In addition to the gimbal
joints, a sliding joint is installed to provide axial motion capability for
deflection, manufacturing tolerances and thermal contractions. A 40-
feet long seamless tube is welded between the upper and lower ends.



The inboard and outboard fuel suction lines consist of two gimbal
joints and a sliding joint. All relative motions between the tank and
thrust structure are accommodated by the gimbals and sliding joint.

The pressure-volume compensators are connected to the thrust structure
on the upper end and the engine on the lower end.

Figures 8, 9, and 10 are typical component parts of the LOX and
fuel suction ducts used on the S-IC stage. One of two ball strut assem-
blies used at the upper end of the LOX suction duct to accommodate the
offset between the LOX tank outlet and the fuel tunnel opening is shown
in Figure 8. The ball strut assembly is limited to absorbing angular
motion in any plane by the internal struts. This type of joint is similar
to the tie-rod joint and the gimbal joint, and this particular design is
capable of 12 3/4° angulation. The ball strut joint is deflected about a
ball that is seated in spherical sockets in the centerline of struts that
join the duct ends. The bearing stress of the ball is approximately 1/4
that in the comparable tie-rod design. As a result, a much smaller
and lighter package is possible for high-pressure lines.

Figure 9 shows a gimbal joint similar in function to the ball strut
assembly described above. The main difference is that an internal or
external universal joint is used in the gimbal joint to prevent elongation
of the bellows under the pressure-separating force while allowing angular
motion in any plane. The primary advantage of gimbal joints is that
high angular deflections are possible at lower actuating loads. The
main disadvantage is that the gimbal ring is heavy because the full,
pressure-area load must be carried by the gimbal ring.

Figure 10 shows the sliding joint used in the fuel feed line of the
S-IC stage. Axial motion capability is provided by the sliding joint to
compensate for structural deflections, manufacturing tolerances and
thermal contractions. Essentially, a sliding joint consists of a bellows
to absorb axial motion and a guide to prevent angular motion of the
bellows. The sliding joint will be elongated by the pressure-separating
force of the bellows area unless the joint is properly restrained by the
missile structure.



Pressure-Volume Compensator

The LOX pressure-volume compensator used in the S-IC stage is
shown in Figure 11. The main functions performed by the compensator
are:

a. Transfer of propellant from the tank to the inlet of the engine,
b. Flexibility for gimbaling of the engine,
c. Reduction of the force required for engine gimbaling,

d. Volume compensation to eliminate pressure fluctuations
when engines are gimbaled.

The importance of pressure compensation is shown in Figures 12
and 13, The LOX and fuel pump inlets on the F-1 engine are shown in
Figure 12. The three pump inlets, two fuel and one oxidizer, on the
F-1 engine are located on the same side of the engine 50 inches from
the engine gimbal center. The pressure balancing function of the com-
pensator is shown schematically in Figure 13. The F-1 engine gimbal
point is also indicated. The PA (pressure area) downward load on the
pump is balanced with an equal and opposite load in the compensator,
which reduces the total PA load on the engine to zero. This reduction
in force allows smaller engine actuators to be used and provides constant
angular engine acceleration during gimbaling. The F-1 engine LOX PA
load is 39, 000 1b, and the two fuel pump PA loads are 14, 300 1b for a
total of 53, 300 1b, This 53, 300 lb must be reacted in the pump and pump
supports if a pressure compensator is not installed. The moment about
the engine gimbal point is 53, 000 lb times the radius of 50 inches, which
results in 2 moment of 2, 665,000 in-1b without a pressure compensator.
Without a compensator, this large moment must be overcome by the
engine actuators. Therefore, a pressure volume compensator is a
definite requirement for gimbaled engines when all the pump inlets are
on the same side of the engine.

The pressure-volume compensator has a nominal I. D. of 17 inches,
an overall length of 80 inches and a weight of 900 lbs. The pressure-
volume compensator is made of three main sections, two gimbal joints
(one at each end) and a compensating section. Only angular motion is
absorbed by each gimbal joint. Provision is made for lateral and angular
offset by placing the two gimbal joints in series. The compensator



section is constructed to permit +9 inches axial motion resulting from
engine gimbaling and manufacturi_ng tolerances., The compensator also
provides for pressure and volumetric compensation. In the particular
design shown, a pressure-balancing chamber is installed between the
main duct bellows. This chamber is open to internal duct pressure and
has the correct cross-sectional area to create an axial force equal and
opposite to the pressure-separating force of the main duct bellows. The
axial stroke of the primary bellows is equal to the stroke of the secondary
so that this volume remains constant when the engine is gimbaled. With-
out a compensator, duct volume changes would be created at the pump
inlet resulting in variations in engine thrust.

A bellows used in the LOX pressure-volume compensator is shown
in Figure 14. This bellows is typical of many used in the missile industry.
The ability of a joint to deflect axially is predicated upon the flexibility
of the bellows. Flexibility is dependent upon the modulus of elasticity
and thickness of the material, the diameter of the bellows, and the size,
shape, and number of convolutions. If the size of convolutions and wall
thickness are constant, flexibility-is directly proportional to the number
of convolutions per given length. Flexibility is also a function of the
number of plys, Therefore, many bellows for missile use are fabricated
from two-to-five plys. A bellows support is usually installed, as indicated
in Figure 14, to prevent excessive deformation of the end convolution.
Material thickness of each ply in a multi-ply bellows is from . 005 to
0.020 inches.

An alternate design for the pressure-volume compensator is shown
in Figure 15. The main difference between this and the compensator
depicted in Figure 11 is the method of secondary bellows support. In
Figure 11 the secondary bellows is supported externally; while in the
alternate configuration, the bellows is supported internally. When using
long-length bellows, a support is needed to prevent buckling. Bellows
can become unstable when pressurized internally and will buckle in a
manner similar to that of a column buckling. In some design situations,
where a long bellows is required for axial stroke, adding a support
point in the middle provides bellows stability by effectively reducing the
bellows length by one-half.

The burst test results of an inboard fuel pressure-volume compen-
sator are shown in Figure 16, The secondary bellows has squirmed to
a high degree when a pressure of 405 psi was applied to the duct. This
test was terminated at 405 psi without rupture of the bellows. The



design burst pressure of this compensator is 135 psi, and the bellows
became unstable at 180 psi pressure. It should be noted that after the
bellows has squirmed and ceased to function as a bellows, there was no
rupture even when a much higher pressure was applied.

In Figure 17, a fuel pressure-volume compensator is shown in the
simulated corners of the engine gimbal pattern during life-cycle testing.
The +Y position is the maximum compressed position of the compensator
and is indicated by the maximum extension of the secondary bellows.
The -Y position is the maximum extended position of the compensator,
indicated by the maximum compressed position of the secondary bellows.
The +X and -X positions are intermediate between compression and
extension, The nominal length of the secondary bellows for the fuel
pressure volume compensator is 17,35 inches. This bellows is compressed
approximately 9. 15 inches in the -Y position and extended 9. 40 inches in
the +Y position. This design results in a 50 percent plus stroke of the
bellows, which is a major advance in bellows technology. Conventional
bellows are normally designed for a 20 percent stroke. The major
advantage of a high-stroke bellows is the resultant decrease in length
required for the same axial stroke.

The tolerances and deflections used in the design of the outboard
LOX and fuel pressure-volume compensator for the S-IC stage are
summarized in Figure 18, The various tolerances are a result of
manufacturing tolerances, engine alignment tolerances and misalignments.
The deflections are caused by static and dynamic loading and shrinkage
caused by thermal conditions.

The engine gimbal pattern of the outboard engines used for guidance
control of the S-IC stage of the Saturn V vehicle is shown in Figure 19.
The necessary ducting flexibility for this gimbal pattern must be provided
by the pressure-volume compensator.

The centerline diagram used to conduct a motion study for the design
of the LOX and fuel pressure-volume compensator is shown in Figure 20.
The various tolerances, deflections, and engine gimbal angles shown in
the previous figures were combined as indicated so that the motion of the
gimbal joints and the compensator section could be determined. Because
of the numerous combinations of tolerances, deflections and engine
gimbal angles, a kinematic analysis was conducted using an IBM 7040
data processing system. A NASA Technical Memorandum-describes
the motion study of the suction ducting used on the S-IC stage (Ref. 1).



Prevalves

Emergency shutoff capability for the S-IC stage feed system is
provided by prevalves. The requirement to include a prevalve in the
S-IC ducting was determined by a need to protect the vehicle, test stand
and launch equipment during static firing and prelaunch operations should
a malfunction of the engine valve occur. Each of the five F-1 engines
is served by one oxidizer and two fuel prevalves. The prevalves are
located in the thrust-structure area upstream of the engine turbopumps.
The LOX and fuel prevalves, which are normally-open type, are held in
the fully open position by spring force and a positive latch mechanism.,
The LOX prevalve is shown in Figure 21. This arrangement satisfies
the requirement for use on a man-rated vehicle. The prevalve is closed
when 750 psig pneumatic pressure (gauge) is applied to the prevalve
actuator cylinder that retracts the latch and overrides the spring force
to close the valve and stop propellant flow to the engines. A spherical
closure element, termed a "visor'", and an integral flowmeter are
contained in the prevalve. When opened, the prevalve becomes an
unobstructed tube. The visor is moved completely out of the propellant
flow stream to minimize flow losses through the prevalve. Visor
position indication is provided continuously over the full range of travel
by a potentiometer and, at the fully opened and closed positions, by
switches,

S-11 STAGE OF SATURN V

There are five J-2 engines on the S-II stage (FIG 22). The liquid
hydrogen tank is forward; the LOX tank is aft. There is a LOX and an
LH, feed line for each J-2 engine. All feed lines, except the short
center engine LOX feed line, are vacuum jacketed to prevent excessive
boiling of the propellant in the lines before ignition of the engines. Each
fuel feed line is 8 inches in diameter and is composed of a prevalve, a
suction duct and a scissors duct. The suction duct runs from the prevalve
near the LHj tank outlet to the scissors duct that is attached to the engine
turbopump inlet. The five LH, tank outlets are spaced around the base
of the LH, tank. The LOX feed line for each engine is routed from a
sump on the LOX tank lower bulkhead to the inlet of the engine turbopump.
A prevalve, suction duct and scissors duct are contained in each 8-inch
diameter feed line. The suction duct runs from the prevalve at the LOX
tank sump to the scissors duct that is attached to the inlet of the engine
turbopump inlet,



Liquid Hydrogen System

A schematic of the LH, system for the S-II stage is shown in Figure
23. A recirculation system is provided to maintain LH, temperature at
the turbopump below about -422° F to prevent pump cavitation during
engine start. LH, is circulated to the engine through a separate system
for each engine with a common return line, Each system is composed
of a recirculation pump in the LH, tank, a recirculation valve and a two-
inch diameter duct from the recirculation pump to the fuel feed line
downstream of the prevalve, The recirculation system outlets of each
engine are manifolded together, and the LH;, is routed through one 3-inch
diameter recirculation return duct to the LH, tank from the engine area.

Operation of the LH) recirculation system is initiated during tank
filling and is continued until 5 to 10 seconds before engine ignition. When
the recirculation system is operated, the normally-open prevalves are
closed, the recirculation valves and return valve are opened, and the
recirculation pumps are started to circulate LH, through the engine pumps.
Circulation of LH, is continued until the system is shut down by stopping
the recirculation pumps, opening the prevalves, and closing the recircu-
lation valves and the return valve,

Liquid Oxygen System

The LOX temperature at the turbopump is maintained below about
-295° by the LOX recirculation system (FIG 24) to prevent pump cavi-
tation during engine start. The LOX circulation path is from the tank
through the engine feed lines to the turbopump, and from the turbopump
to the LOX tank through the uninsulated 3-inch-diameter LOX recircu-
lation return lines. LOX flow in the recirculation system is maintained
by thermopumping, the LOX absorbs heat in the uninsulated LOX return
lines, Provisions were made for injecting gaseous helium into the
return lines to establish LOX circulation in case thermopumping is not
self-induced., The LOX prevalves are open during recirculation. The
two-inch diameter recirculation valves are closed near the end of S-IC
boost to stop the recirculation flow,

S-IVB STAGE OF SATURN V

The arrangement of the S-IVB propellant feed system (FIG 25) is
similar to that of the S-II system. One J-2 engine is used on the 5-IVB
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stage. The liquid hydrogen tank is forward and the LOX tank is aft.
The 10-inch suction duct is routed from the prevalve at the LH, tank
outlet to the scissors duct that is attached to the engine turbopump
inlet. The LOX suction duct runs from the bottom of the LOX tank to
the scissors duct attached to the turbopump inlet.

Liquid Hydrogen System

The LHp system for the S-IVB stage of Saturn V, shown schematically
in Figure 26, is composed of a pump mounted inside the LH, tank, a
recirculation control valve, a 2-inch diameter duct from the pump outlet
to the LH, feed line downstream of the prevalve and a 2-inch diameter
LH) return line from the engine to the LH; tank,

Operation of the LHp recirculation system is initiated by closing the
normally-open LH; prevalve and starting the LH, recirculation pump.
The LH, circulation path is from the recirculation pump through the
recirculation valve, engine pump and return line to the LH) tank., Shortly
before the recirculation system is stopped, the LH, prevalve is opened
and LH, is pumped through the prevalve into the LHp tank. In this way,
any bubbles that may have accumulated under the antivortex screen will
be removed. The recirculation system is shut down before engine start
command by closing the recirculation control valve and stopping the pump.

LOX System

The LOX system is shown in Figure 27. The LOX recirculation
system is composed of a recirculation pump mounted on the lower bulk-
head of the LOX tank, a recirculation control valve, 2-inch diameter
ducting from the pump to the LOX feed line downstream of the LOX pre-
valve and a 2-inch diameter return line from the engine to the LLOX tank.

Operation of the LOX recirculation system is initiated by closing
the normally-open LOX prevalve and starting the LOX recirculating
pump. The LOX recirculation path is from the recirculation ‘pump
through the recirculation valve, engine pump, and return line to the LOX
tank, Shortly before the recirculation system is stopped, the LLOX pre-
valve is opened and LOX is pumped through the prevalve into the LOX
tank. In this way, any bubbles that may have accumulated under the
antivortex screen will be removed. The recirculation system is shut
down before engine start command by closing the recirculation control
valve and stopping the pump.

11



Scissors Ducts

The J-2 LOX scissors duct used on the S-II, S-IVB stages is shown
in Figure 28. The J-2 inlet line is required to duct fluid from the vehicle
stage to the engine while undergoing relatively large movements of dis-
placement and rotation. Included in the movement caused by engine
gimbaling are +4 1/2 inches axial travel, and a twisting rotation of 3/4
degree. In addition to the motions caused by gimbaling, there are
installation misalignments that must be added to the duct movements.
The scissors duct is composed of a linkage to stabilize the bellows by
providing an intermediate lateral support. As a secondary function, the
ends of the bellows are oriented by the linkage into a position that
minimizes the bellows strain for any particular line movement. The
linkage is much more rigid than the bellows; hence, the movements of
the ends of the bellows are dependent upon the positioning of the linkage.

The LOX and LH, scissors ducts mounted to the J-2 engine are rep-
resented in Figure 29, The LOX and fuel pump are mounted on opposite
sides of the engine gimbal point and at the same distance from the gimbal
point. The pressures in the LOX and LH, ducts are approximately equal.
As a result, the pressure-area loads are balanced about the gimbal point
and the resulting moment is balanced, eliminating the loading on the
engine actuators. This balancing of loads eliminates the requirement
for a pressure-volume compensator with the J-2 engine.

CONCLUSIONS

The adequacy of the design of the propellant feed system used on the
Saturn V vehicle has been demonstrated by, static firing. Gimbaling
tests during static firing have demonstrated the design of the engine
gimbal lines.

As a result of engine pump and actuator loading, a pressure com-
pensated duct is required for the F-1 engine and is not required for the
J-2 engine.

Problems such as pressure loading of engine turbopumps and actua-
tors, maintaining required propellant temperature and pressure at the
turbopump inlets, and vehicle safety can be reduced or eliminated by
properly designed propellant feed systems.

The technology that has been developed for the present propellant
feed systems will provide a sufficient base for the design of future systems.
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